Under Normal Circumstances What Route of Exposure if Easy to the Benzene

Public Health Occupational Exposure to Benzene
Melvyn Kopstein
  • LAST MODIFIED: 26 April 2018
  • DOI: 10.1093/obo/9780199756797-0180

Introduction

Millions of workers around the world are routinely exposed to benzene from product mixtures formulated with benzene-containing petrochemicals (e.g., toluene, VM&P naphtha) that are classified as Group 3 carcinogens by the International Agency for Research on Cancer (IARC). Exposure regulations do not differentiate between benzene exposures arising from untested mixtures (in terms of carcinogenicity) and those arising from the use of pure benzene. Petrochemicals containing less than 0.1 percent benzene, such as severely hydrotreated mineral spirits, are sometimes referred to as "trace" benzene products. As will be discussed, products containing less than 0.1 percent benzene may cause benzene exposures that are hardly "trace." Benzene exposures are generally expressed in parts per billion (ppb) and parts per million (ppm), with single digit ppb measurements roughly corresponding to urban background levels. On the other hand, some published articles report occupational exposures to benzene that are are tens of thousands-fold higher than outdoor background levels. The magnitude of any benzene exposure depends on exposure factors such as (a) the benzene content of the product, (b) ventilation, (c) liquid and air temperatures, (d) activity coefficient of benzene in the product, (e) pattern of product usage (e.g., volume used and time spent performing a task), (f) distance between a worker's breathing zone and evaporating product, and (g) personal protective equipment. Because an unlimited combination of workplace exposure factors are possible, benzene exposures are known to vary by orders of magnitude in different occupational settings. The Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) and short-term exposure limit (STEL) for benzene are 1 ppm and 5 ppm, respectively. The American Conference of Governmental Industrial Hygienists (ACGIH) STEL for benzene is 2.5 ppm and its threshold limit value (TLV) is 0.5 ppm. PELs and TLVs reflect long-term exposures averaged over eight-hour sample periods, while an STEL reflects short-term exposures averaged over a continuous 15-minute period. The National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit (REL) for benzene is only 0.1 ppm. Peak exposures, as well as short-term exposures averaged over less than 15-minutes, may be orders of magnitude higher than long-term exposures averaged over eight hgours. Because long-term exposures effectively smooth out high and low (or no) benzene exposures within sampling periods, it is important to understand that short-term exposures could easily exceed an STEL within any given long-term sampling period in which the time-averaged long-term benzene exposure is well below the PEL and TLV. Since published benzene exposure data are scarce relative to the known extent of the benzene exposure problem, published exposure data must be carefully evaluated before extrapolating them to workplaces having no exposure monitoring data, and for which relevant information about exposure factors is lacking. Anticipating and estimating benzene exposures requires a proper understanding of the amount of benzene in a product under consideration. Product benzene contents reported in published articles should be based upon peer-reviewed analytical testing methods (e.g., those issued by ASTM International) or generally accepted secondary sources. Moreover, benzene contents should comport with the chemical and physical properties of commodity petrochemical ingredients such as nitration-grade toluene and how they were manufactured.

General Overviews

Working conditions around the world are known to be highly variable (International Agency for Research on Cancer (IARC) 2012). Countless commercial products used by workers are formulated with toluene, VM&P naphtha, mixed hexanes, regular mineral spirits, severely hydrotreated mineral spirits, mixed xylenes, and other benzene-containing commodity petrochemicals. Some products are mixtures of different hydrocarbons, while others include hydrocarbon solvents along with chemicals such as methyl alcohol, methyl ethyl ketone (MEK), and acetone. Millions of workers are exposed to benzene arising from their use of benzene-containing products (Goldstein and Infante 2016; Kauppinen, et al. 2000; ATSDR 2000). Benzene exposures occur in thousands of workplaces around the world, all with their own (and variable) ventilation characteristics, environmental conditions, administrative controls, and patterns in which benzene-containing products are used. The amount of published benzene exposure data in occupational settings is extremely limited and/or difficult to assess (van Wijngaarden and Stewart 2003, cited under Occupational Exposures to Benzene; Verma, et al. 2000; Verma and Rana 2001; Caldwell, et al. 2000). Given the paucity of published exposure information and the existence of highly variable exposure conditions—and the fact that the amount of benzene in products is also highly variable—it is not advisable to statistically analyze limited published exposure data (frequently presented with incomplete monitoring conditions) and extrapolate them to workplaces for which information about ventilation and other exposure factors is unavailable. It is essential to have an understanding of the concentration of benzene in a product in order to control exposures and to retrospectively estimate past exposures. The amount of benzene in a petrochemical matrix such as mineral spirits can be measured using gold standard testing methods offered by ASTM International (Grob and Barry 2004, cited under Benzene Content of Petrochemicals). ASTM International and US Environmental Protection Agency (EPA) testing methods have been peer reviewed, and their precision, detection limits, and other performance metrics are known.

  • ATSDR. 2000. Stoddard solvent toxicity. Publication ATSDR-HE-CS-2001–004.

    The report discusses 2 million workers (excluding those employed by the military) experiencing exposure to Stoddard solvent between 1981 and 1983.

  • Caldwell, D., T. Armstrong, N. J. Barone, J. A. Suder, and M. J. Evans. 2000. Hydrocarbon solvent exposure data: Compilation and analysis of the literature. American Industrial Hygiene Association Journal 61:881–894.

    The article discusses benzene exposures in the period 1978 to 1997. According to the authors, while hydrocarbon solvents are used in a very wide range of industries and processes, historic exposure data are rare. Also see Occupational Exposures to Benzene and Examples of High Benzene Exposures.

  • Goldstein, B., and P. Infante. 2016, May. Benzene as a cause of hematological cancers: A recurring example of the importance of mechanistic understanding and animal studies. Poster session at IARC 50th Anniversary meeting. Lyon, France.

    Millions of workers remained exposed to benzene in 2016 according to the authors. They urge IARC to reevaluate the relation between benzene exposure and non-Hodgkins lymphoma.

  • International Agency for Research on Cancer (IARC). 2012. Chemical agents and related occupations. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 100F.

    The monograph reports wide variability in working conditions in places of employment around the world. Since table 1.2 in the 100F Benzene Monograph pertains to only twenty-two settings where products containing very low levels of benzene were used (under conditions that are not specified), the tabulated measurements should not be viewed as predictive of exposures at other workplaces in which different conditions of exposure (e.g., product benzene content, temperatures, ventilation, product type) apply. Also see Material Safety Data Sheets and Benzene-Containing Mixtures.

  • Kauppinen, T., J. Toikkanen, D. Pedersen, et al. 2000. Occupational exposure to carcinogens in the European Union. Occupational and Environmental Medicine 57:10–18.

    According to Table 3, 1.4 million workers in the European Union were exposed to benzene between 1990 and 1993.

  • Verma, D., M. Johnson, and J. McLean. March/April 2000. Benzene and total hydrocarbons exposures in the downstream petroleum industries. American Industrial Hygiene Association Journal 61:255–263.

    The authors cite the need for more exposure monitoring. Their recommendation is (page 262), "Task-based sampling should be carried out in addition to traditional long-term full-shift personal sampling." Table 3 includes 124 sampling results showing short-term exposures between 10 ppb and 50 ppm. Of that number, forty-nine samples were between 1.1 and 50 ppm. Also see Occupational Exposures to Benzene, Short-Term (Task-Specific) Exposures, and Examples of High Benzene Exposures.

  • Verma, Y., and S. Rana. 2001. Biological monitoring of exposure to benzene in petrol pump workers and dry cleaners. Industrial Health 39:320–333.

    The authors discuss shortages of published benzene exposure data and present two important conclusions. First, reporting benzene exposure data statistically (e.g., arithmetic means) without individual data from which the means were calculated could lead to misinterpretation because high exposures are "lost in such averaging." Second, short-term (task-specific) exposure monitoring is needed to capture high exposures that are lost in long-term sampling. Also see Occupational Exposures to Benzene, Short-Term (Task-Specific) Exposures, and Examples of High Benzene Exposures.

back to top

Users without a subscription are not able to see the full content on this page. Please subscribe or login.

How to Subscribe

Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here.

Article

Up

  • Abortion
  • Access to Health Care
  • Action Research
  • Active Aging
  • Active Living
  • Addiction
  • Adolescent Health, Socioeconomic Inequalities in
  • Adolescent Risk-Taking Behavior in the United States
  • Advocacy, Public Health
  • Agricultural Safety and Public Health
  • Air Quality: Health Effects
  • Air Quality: Indoor Health Effects
  • Alcohol Availability and Violence
  • Alternative Research Designs
  • Ambient Air Quality Standards and Guidelines
  • American Perspectives on Chronic Disease and Control
  • Antimicrobial Resistance (AMR)
  • Arts in Health
  • Asbestos
  • Asthma in Children
  • Asthma, Work-Related
  • Attachment as a Health Determinant
  • Behavior
  • Behavior Change Theory in Health Education and Promotion
  • Behavioral Risk Factor Surveillance
  • Bicycling and Cycling Safety
  • Bioethics
  • Birth and Death Registration
  • Birth Cohort Studies
  • Board of Health
  • Breastfeeding
  • Built Environment and Health, The
  • Business and Corporate Practices
  • Cancer Communication Strategies in North America
  • Cancer Prevention
  • Cancer Screening
  • Capacity Building
  • Capacity Building for NCDs in LMICs
  • Capacity-Building for Applied Public Health in LMIC: A US ...
  • Cardiovascular Health and Disease
  • Child Labor
  • Child Maltreatment
  • Children, Air Pollution and
  • Children, Injury Risk-Taking Behaviors in
  • Children, Obesity in
  • Citizen Advisory Boards
  • Climate Change and Human Health
  • Climate Change: Institutional Response
  • Clinical Preventive Medicine
  • Community Air Pollution
  • Community Development
  • Community Gardens
  • Community Health Assessment
  • Community Health Interventions
  • Community Partnerships and Coalitions
  • Community-Based Participatory Research
  • Complexity and Systems Theory
  • Cultural Safety
  • Culture and Public Health
  • Definition of Health
  • Dental Public Health
  • Design and Health
  • Dietary Guidelines
  • Directions in Global Public Health Graduate Education
  • Driving and Public Health
  • Ecological Approaches
  • Enabling Factors
  • Environmental Health, Pediatric
  • Environmental Laws
  • Environmental Protection Agency
  • Ethics of Public Health
  • Evidence-Based Pediatric Dentistry
  • Evidence-Based Public Health Practice
  • Family Planning Services and Birth Control
  • Food Safety
  • Food Security and Food Banks
  • Food Systems
  • Frail Elderly
  • Functional Literacy
  • Genomics, Public Health
  • Geographic Information Systems
  • Geography and Health
  • Global Health
  • Global Health Diplomacy
  • Global Health Promotion
  • Global Health Security
  • Guide to Community Preventive Services, The
  • Health Administration
  • Health Communication
  • Health Disparities
  • Health Education
  • Health Impact Assessment
  • Health in All Policies
  • Health in All Policies in European Countries
  • Health Literacy
  • Health Literacy and Non-Communicable Diseases
  • Health Measurement Scales
  • Health Planning
  • Health Promoting Hospitals
  • Health Promotion
  • Health Promotion Foundations
  • Health Promotion Workforce Capacity
  • Health Promotion Workforce Capacity
  • Health Systems of Low and Middle-Income Countries, The
  • Healthy People Initiative
  • Healthy Public Policy
  • Hepatitis C
  • High Risk Prevention Strategies
  • Homelessness
  • Human Rights, Health and
  • Human Sexuality and Sexual Health: A Western Perspective
  • IANPHI and National Public Health Institutes
  • Immigrant Populations
  • Immunization and Pneumococcal Infection
  • Immunization in Pregnancy
  • Indigenous Peoples, Public Health and
  • Indigenous Populations of North America, Australasia, and ...
  • Indoor Air Quality Guidelines
  • Inequities
  • Infant Mortality
  • Internet Applications in Promoting Health Behavior
  • Intersectoral Action
  • Intersectoral Strategies in Low - Middle Income Countries ...
  • Justice, Social
  • Knowledge Translation and Exchange
  • Knowledge Utilization and Exchange
  • Law of Public Health in the United States
  • Media Advocacy
  • Mental Health
  • Mental Health Promotion
  • Migrant Health
  • Migrant Worker Health
  • Motor Vehicle Injury Prevention
  • Multi-Drug-Resistant Tuberculosis
  • Nanotechnology
  • National Association of Local Boards of Health
  • National Public Health Institutions
  • Needs Assessment
  • Needs Assessments in International Disasters and Emergenci...
  • Obesity Prevention
  • Occupational Cancers
  • Occupational Exposure to Benzene
  • Occupational Exposure to Erionite
  • Occupational Safety and Health
  • Occupational Safety and Health Administration (OSHA)
  • Oral Health Equity for Minority Populations in the United ...
  • Ottawa Charter
  • Parenting and Work
  • Parenting Skills and Capacity
  • Participatory Action Research
  • Patient Decision Making
  • Pesticide Exposure and Pesticide Health Effects
  • Pesticides
  • Physical Activity and Exercise
  • Physical Activity Promotion
  • Pneumoconiosis
  • Polio Eradication in Pakistan
  • Population Aging
  • Population Determinants of Unhealthy Foods and Beverages
  • Population Health Objectives and Targets
  • Precautionary Principle
  • Prenatal Health
  • Preparedness
  • Program Evaluation in American Health Education
  • Program Planning and Evaluation
  • Public Health, History of
  • Public Health Surveillance
  • Public-Private Partnerships in Public Health Research and ...
  • Public-Private Partnerships to Prevent and Manage Obesity ...
  • Quantitative Microbial Risk Assessment
  • Radiological and Nuclear Emergencies
  • Randomized Controlled Trials
  • Real World Evaluation Strategies
  • Reducing Obesity-Related Health Disparities in Hispanic an...
  • Research Integrity in Public Health
  • Resilient Health Systems
  • Rural Health in the United States
  • Safety, Patient
  • School Health Programs in the Pacific Region
  • Sex Education in HIV/AIDS Prevention
  • Silicosis
  • Skin Cancer Prevention
  • Smoking Cessation
  • Social Determinants of Health
  • Social Epidemiology
  • Social Marketing
  • Statistics in Public Health
  • STI Networks, Patterns, and Control Strategies
  • Stillbirths
  • Suicide
  • Sustainable Development Goals
  • Systems in the United States, Public Health
  • Systems Modeling and Big Data for Non-Communicable Disease...
  • Systems Theory in Public Health
  • Traditional, Complementary, Alternative, and Integrative M...
  • Translation of Science to Practice and Policy
  • Traumatic Stress and Post-Traumatic Stress Disorder
  • Tuberculosis among Adults and the Determinants of Health
  • UK Public Health Systems
  • Unintentional Injury Prevention
  • Urban Health
  • Vaccination, Mandatory
  • Vaccine Hesitancy
  • Vermiculite
  • Violence Prevention
  • War
  • Water Quality
  • Water Quality and Water-Related Disease
  • Weight Management in US Occupational Settings
  • Welfare States, Public Health and Health Inequalities
  • Workforce
  • Worksite Health Promotion
  • World Health Organization (WHO)

Down

prattdayssiders.blogspot.com

Source: https://www.oxfordbibliographies.com/view/document/obo-9780199756797/obo-9780199756797-0180.xml

0 Response to "Under Normal Circumstances What Route of Exposure if Easy to the Benzene"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel